Hacker Newsnew | past | comments | ask | show | jobs | submit | goatking's commentslogin

Well, you put a lot of trust in the individuals in this case. A disgruntled employee can just let the bad guys in on purpose, saying "Yes they belong here".


That works until they run into a second person. In a big corp where people don't recognize each other you can also let the bad guys in, and once they're in nobody thinks twice about it.


Agreed, but you can put EC2 on that list as well


Assuming running instances remain running, ec2 would be less bad I think.


yes, the previous AWS incident to this one iirc ec2 instances were not reachable from AWS console (IAM issue?) but they kept running and working


Wealthsimple Tax is free too, and pretty good for simple use cases.


This project is really cool, love it!

How would someone start learning and implementing something like this? Like, I don't even know what keyword to put into Google.

Are there any articles, blog posts, etc. that you used while researching?


This is simply not true. I've just checked


This is pretty cool! I am also interested in game engine programming, but I am in the very beginning of the journey.

Do you have any recommendation on voxel engine learning materials (e.g. books, courses, etc)


Voxel engines are interesting because they're very much an area of active research. People are often coming up with novel techniques, and adapting traditional techniques in interesting ways. There isn't any good, singular resource for learning about voxel engine development thay I know of.

I'd recommend Handmade Hero for a more traditional resource on how to build a game engine. That's how I learned to program for real, and it worked great for me.


Wouldn't that ray destroy any life on any nearby planet?


I think the poster above meant "wouldn't notice anything out of the ordinary until it's too late."


How did you build your own data center? Is it in your house, or renting a place somewhere? How much did it cost?

I would be curious about any details you can share.


I self host on an NAS at home with a free Cloudfront CDN on top; it's really easy to do and for simple websites (including dynamic ones backed by an sqlite db) that don't receive excessive traffic, it works well and is almost free (since the NAS would be on in any case).

Of course it wouldn't work for all cases but I find it beats having a vps somewhere that can be taken down for no reason at all.


This is like saying "I got kicked off a plane so I bought a Civic and bolted a wing on the back". Cloud front is doing all the heavy lifting and you're not really getting data center level reliability.


Does a Civic fly when it has a wing bolted on it? Coz my setup serves pages alright.


Sure, but that is not what people will read when you say "I built my own data center".

"I setup my own server" would be a lot less misleading.


I never said I built my own data center; I think you have me confused with the OP.


Os: Proxmox

Hardware: 4x Old decommed 19" dells on Ebay with plenty of DDR4 memory, HP Proliant G10+ are also good

Ups Eaton Pro

Gigabit Fiber Internet, which is more than enough. 10-50mbit can suffice for compute nodes too.

Bought ssds and m2 storage plus some spinning ols rust drives

Temp and humidity monitoring

Google Nest Protect smoke detector

TP link 16amp smart plugs on all, to have a control plane to turn it all off remotely

Workloads:

Most are LXC

Some Docker

KVM virtual machines

Zero trust: Some Cloudflare

Tailscale

Proxmox backup server to back it all up, lots of retention

Monitoring:

Deployed remote uptime monitoring on fly.io

Read and experiment a lot Hang out on /r/homelab /r/homedatacenter and /r/selfhosted for learning, community and inspiration


I have space in my house, using up half a shed I have 1 gbit fiber


How can I, a regular software engineer, learn about quantum computing without having to learn quantum theory?

> Worth spending a little time doing some long tail strategizing I’d say

any tips for starters?


If you're a software engineer, then the Quantum Katas might fit your learning style. The exercises use Q#, which is quantum specific programming language.

https://quantum.microsoft.com/en-us/tools/quantum-katas

The first few lessons do cover complex numbers and linear algebra, so skip ahead if you want to get straight to the 'quantum' coding, but there's really no escaping the math if you really want to learn quantum.

Disclaimer: I work in the Azure Quantum team on our Quantum Development Kit (https://github.com/microsoft/qsharp) - including Q#, the Katas, and our VS Code extension. Happy to answer any other questions on it.


Is there a reasonable pivot for someone well versed in the software engineering space to get in, or is it still the playground of relevant Ph.Ds and the like? I've been up and down the stack from firmware to the cloud, going on 14 years in the industry, have a Master's in CS, am the technical lead for a team, yada yada, but have been flirting with the idea of getting out of standard product development and back into the nitty gritty of the space I first pursued during undergrad.


> Is there a reasonable pivot for someone well versed in the software engineering space to get in, or is it still the playground of relevant Ph.Ds and the like?

there's no such thing as a practical QC and there won't be for decades. this isn't a couple of years away - this is "maybe, possibly, pretty please, if we get lucky" 25-50 years away. find the above comment that alludes to "2019 estimates needing ~20 million physical qubits" and consider that this thing has 105 physical qubits. then skim the posted article and find this number

> the key quantum computational resource — are now approaching 100 µs (microseconds)

that's how long those 105 physical qubits stay coherent for. now ponder your career pivot.

source: i dabbled during my PhD - took a couple of classes from Fred Chong, wrote a paper - it's all hype.


Start here: https://youtu.be/F_Riqjdh2oM

You don't need to know quantum theory necessarily, but you will need to know some maths. Specifically linear algebra.

There are a few youtube courses on linear algebra

For a casual set of video: - https://youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFit...

For a more formal approach:

- https://youtube.com/playlist?list=PL49CF3715CB9EF31D

And the corresponding open courseware

- https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010...

Linear algebra done right comes highly recommended

- https://linear.axler.net/


+1 for 18-06 and Axler. Another, more concrete, option (not sure how much it will help with quantum theory) is Stephen Boyd's "Introduction to Applied Linear Algebra" available online here:

https://web.stanford.edu/~boyd/vmls/


Isn't there a Python library that abstracts most of it away with a couple of gigantic classes with incompatible dependencies?


The bar for entry is surprisingly low, you just need to brush up on intro abstract algebra. I recommend the following:

1. Kaye, LaFlamme, and Mosca - An Introduction to Quantum Computing

2. Nielsen and Chuang - Quantum Computation and Quantum Information (The Standard reference source)

3. Andrew Childs's notes here [1]. Closest to the state-of-the-art, at least circa ~3 years ago.

[1] - https://www.cs.umd.edu/~amchilds/qa/


specifically avoid resources written by and for physicists.

the model of quantum mechanics, if you can afford to ignore any real-world physical system and just deal with abstract |0>, |1> qubits, is relatively easy. (this is really funny given how incredibly difficult actual quantum physics can be.)

you have to learn basic linear algebra with complex numbers (can safely ignore anything really gnarly).

then you learn how to express Boolean circuits in terms of different matrix multiplications, to capture classical computation in this model. This should be pretty easy if you have a software engineer's grasp of Boolean logic.

Then you can learn basic ideas about entanglement, and a few of the weird quantum tricks that make algorithms like Shor and Grover search work. Shor's algorithm may be a little mathematically tough.

realistically you probably will never need to know how to program a quantum computer even if they become practical and successful. applications are powerful but very limited.

"What You Shouldn't Know About Quantum Computers" is a good non-mathematical read.

https://arxiv.org/abs/2405.15838


I recommend this book I studied it in Undergrad and I never took a quantum theory course. https://www.amazon.com/Quantum-Computing-Computer-Scientists...


Are there any insights that you can give based off the info you've learned about quantum computation that you might not have been able to reach if you hadn't learned about it?

From my __very__ shallow understanding, because all of the efficiency increases are in very specific areas, it might not be useful for the average computer science interested individual?


Nearly all of quantum computation is theoretical algorithms and the hard engineering problems haven't been solved. Most of the math though has a large amount of overlap of AI / ML and all of deep learning to the point that Quantum computers could be used as "ML accelerators" by using algorithms (this is called Quantum Machine learning) [1]. Quantum computing could be learned with a limited understanding of Quantum theory unless you are trying to engineer the hardware.

https://en.wikipedia.org/wiki/Quantum_machine_learning


Possibly of interest, but I wrote a (hopefully approachable) report on quantum perceptrons a few years back [1]. Perhaps it's found elsewhere, but I was surprised by how, at least in this quantum algo's case, the basis of training was game theoretic not gradient descent!

[1] - https://kvathupo.github.io/cs/quantum/457_Final_Report.pdf


The simplest algorithm to understand is probably Grover's algorithm. Knowing that shows you how to get an sqrt(N) speedup on many classical algorithms. Then have a look at shor's algorithm which is the classic factoring algorithm.

I would not worry about hardware at first. But if you are interested and like physics, the simplest to understand are linear optical quantum circuits. These use components which may be familiar from high school or undergraduate physics. The catch is that the space (and component count) is exponential in the number of qubits, hence the need for more exotic designs.


I always recommend Watrous's lecture notes: https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.pdf

I prefer his explanation to most other explanations because he starts, right away, with an analogy to ordinary probabilities. It's easy to understand how linear algebra is related to probability (a random combination of two outcomes is described by linearly combining them), so the fact that we represent random states by vectors is not surprising at all. His explanation of the Dirac bra-ket notation is also extremely well executed. My only quibble is that he doesn't introduce density matrices (which in my mind are the correct way to understand quantum states) until halfway through the notes.


There is a course mentioned in the article, but I'm not clear on how "theory" it is.

https://coursera.org/learn/quantum-error-correction


Might be worth checking out: https://quantum.country/


If you want to learn about what theoretical quantum computers might be able to do faster than classical ones and what they might not, you can try to read about quantum complexity theory, or some of what Scott Aaronson puts out on his blog if you don't want to go that in depth.

But the key thing to know about quantum computing is that it is all about the mathematical properties of quantum physics, such as the way complex probabilities work.


These lessons might be of help: https://youtu.be/3-c4xJa7Flk?si=krrpXMKh3X5ktrzT


First learn about eigenvalues.


I'm in similar shoes as OP, want to do something else. I think I'm burned out, and don't have the way to fix it (e.g. taking a year long sabbatical)

I was looking into a lot of these things you mention here, problem is the "golden handcuff" from software engineering. I could only start doing anything new by taking a HUGE pay cut for many years, and I simply can't do that in my current life situation.

Let me know if you have a solution to that :D


Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: